

#### Quantification of Thermokarst and Carbon Release

PI: Go Iwahana (UAF) CoIs: Reginald Muskett (UAF), Robert Busey (UAF) Student Assistants: Naresh Saravanan, Sarah Liben, Zachary Suave

Collaborators:

Stan Wullschleger (NGEE, ORNL) Timothy Kneafsey (NGEE, LBNL) Jinho Ahn (Seoul National Univ.)



#### Science Objectives

- 1. Measure the spatial variation of thermokarst subsidence
- 2. Reduce uncertainty in thermokarst quantification using remote sensing
- 3. Estimate GHG and organic matter contents in permafrost
- 4. Evaluate the rates of potential release of carbon upon thermokarst development (Release I)



# Focus Areas

![](_page_2_Figure_1.jpeg)

- Barrow BEO
- Dalton HWY
- Anaktuvuk Fire burned in 2007
- Kougarok Fire burned in 2015

# Anaktuvuk Survey Plots

![](_page_3_Picture_1.jpeg)

![](_page_3_Picture_2.jpeg)

AirMOSS anaktW 170813

- Burned vs. Unburned
- Thermokarst intensity
- Slope

UAVSAR anaktW 170916

![](_page_4_Figure_0.jpeg)

#### Survey contents:

- Micro-topography
- Thaw settlement
- Thaw depth
- Surface moisture
- Core analyses
- Inter-annual subsidence

#### Thermokarst intensity 4U<4B1<4B2

# Micro-topography

#### Thermokarst intensity U<B1<B2

![](_page_5_Figure_2.jpeg)

![](_page_5_Figure_3.jpeg)

## Thaw settlement, Thaw depth, & Surface moisture

![](_page_6_Figure_1.jpeg)

![](_page_6_Picture_2.jpeg)

|           | 4U        | 4B1        | 4 <u>B</u> 2 | бU         |      | 6B1 |      | 6B2 |      |
|-----------|-----------|------------|--------------|------------|------|-----|------|-----|------|
|           | 1         | 1          | 1<br>        | бсm        | 12cm | бст | 12cm | бст | 12cm |
|           | <br> <br> | <br> <br>  | <br> <br>    | 08/22/2017 |      |     |      |     |      |
| Ave       | <br> <br> | <br> <br>  | <br> <br>!   | 32         | 38   | 36  | 38   | 36  | 44   |
| Std       | <br>      | <br> <br>  | <br> <br>    | 14         | 13   | 13  | 13   | 13  | 9    |
| Min       | <br> <br> |            | <br> <br>    | 5          | 2    | 3   | 7    | 3   | 18   |
| Max       |           |            | <br> <br>    | 52         | 52   | 52  | 59   | 52  | 62   |
| nundation | 1         | :<br> <br> | 1            | 5          | 17   | 35  | 50   | 42  | 64   |

# Permafrost Core/Block Analyses

![](_page_7_Picture_1.jpeg)

![](_page_7_Figure_2.jpeg)

- Ice content
- Organic matter content
- CH<sub>4</sub>/CO<sub>2</sub> contents
- Water stable isotopes
- Geochemistry

# Near term plans for analysis/publication

Remote Sensing Analysis

 Spatial Variation in Thermokarst Subsidence after the Anaktuvuk River Fire

Core Analysis

• Physical and Geochemical profiles of active layer and near surface permafrost near Barrow.

# Longer-term plans for synthesis and/or multi-sensor analyses

- Remote Sensing of thermokarst subsidence
- Error analyses, Quantification of Volume loss in permafrost / Surface Deformation Processes due to Thermokarst
- using InSAR/Polarimetry of High-Resolution optical imagery, UAVSAR/AirMOSS, RADARSAT2, and ALOS1/2

# Posters for more details

- 2017 and past field campaigns and Overview of AAC data
  - → Go Iwahana: Quantification of Thermokarst and Carbon Release: Field Surveys
  - →Seungbum Kim: Dynamic inundation mapping using SMAP and UAVSAR data
- Perspectives to data and error analyses using ABoVE airborne and space-borne SARs

→ **Reginald Muskett**: InSAR Experiments in Arctic Alaska

Multidisciplinary study in the Anaktuvuk River Fire
→Randi Jandt: Tundra Fire Accelerates De-frosting of America's Icebox

### Artifact in Barrow L-band image

![](_page_12_Picture_1.jpeg)

## P-band Flight line shifted: Still capable for interferometry?

![](_page_13_Picture_1.jpeg)

## Problem in L-band flight line; Fixable?

![](_page_14_Picture_1.jpeg)